
LITERATURE CITED 

i. O. Kreisher, Scientific Principles of Drying Technology [in Russian], Moscow (1961). 
2. V. G. Petrov-Densiov and L. A. Maslennikov, Processes of Heat and ~isture Transfer in 

Industrial Insulation [in Russian], Moscow (1983). 
3. G. N. Dul'nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composite 

Materials [in Russian], Leningrad (1974). 
4. A. V. Lykov, Heat and Mass Transfer (Handbook) [in Russian], Moscow (1978). 

STEADY-STATE %40-DIMENSIONAL DIFFUSION OF A RADIOACTIVE IMPURITY 
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UDC 533.6 

We Consider the analytical solution of the problem of steady-state diffusion of a 
radioactive impurity in a gas-filled channel of finite length with sorbing walls, 
with allowance for surface diffusion. The conditions under which the two-dimen- 
sional problem becomes one-dimenSional are found. 

The study of diffusion of impurity components in gas-filled porous media is of great 
importance in developing a whole range of technologies associated with processes of drying, 
absorption, desorption, and heterogeneous catalysis, as well as in solving radioecological 
problems. The simplest model of capiilary~por0us media in the form of a set of cylindrical 
capillaries allows the discussion to be confined to diffusion in a single capillary. Further 
analysis is carried out, as a rule, on the assumption that the bulk and adsorption phases 
are in equilibrium in each cross section of the capillary, which allows the problem to be 
reduced to a one-dimensional formulation with the introduction of an effective diffusion co- 
efficient, which makes allowance for the effect which both absorption and diffusion on the 
surface of the capillary have on the total diffusion flux [1-3]. In the case of steady-state 
diffusion of a radioactive impurity as well as in the case of unsteady-state diffusion of a stable 
impurity, however, the local equilibrium in an element of length of the channel may be dis- 
rupted substantially and as a result the contributions of volume and surface diffusion to 
the total diffusion flux through the capillary are redistributed considerably. In our study 
we find the parameter that specifies the degree of such nonequilibrium in the case of steady- 
state diffusion of a radioactive impurity and examine the conditions for the transition to 
the one-dimensional formulation. 

Let us consider a cylindrical channel of length L and radius ro, filled with a motion- 
less inert gas. Sappose thatthe Concentration of the radioactive impurity is maintained 
at co at the beginning of the channel and is zero at the end of the channel. In accordance 
~ith the geometry of the problem we chose a cylindrical coordinate system, directing the z 
axis along the axes of tNe channel. Then steady-state diffusion of this impurity in the 
channel, complicated by adsorption on the channel walls and diffusion along the channel sur- 
face, can be described by the system of equations 

OZc OZc 1 Oc 
- -  + 4 gc  (x, p) = O, 
Ox z ~ p Op (1) 

.d~c, [ Oc 
8 --pc,(x)--s |-El-! =0, (2) 

dx  = \ u p / o = 1  
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~~ [0-~9 +tC(X' 9)]o=1 =tCs(X)' (3) 

c(O, p)=c0, c(1, p)=O, O<c(x, 0 )<~,  (4) 
2 �9 2 where  e = ( ro /L)  2, g = %ro/D, p = %ro/Ds, t = v t r o / 4 D ;  b = Br~/Ds, S = Bob/L, and Bo = 

vtno~a/4B is Henry's adsorption coefficient. 

Equations (19 and (29 describe the balance of the number of particles in an element of 
volume and in an element of surface of the channel. By means of the boundary condition (3) 
the radial diffusion flux on the channel wall is represented as the resultant of two fluxes: 
the flux of molecules incident on the wall from the gaseous phase and the flux of desorbed 
molecules. The assumption is that the molecules incident on the wall have an equilibrium 
(IIaxwellian) velocity distribution and the adsorption isotherm is linear. The problem (i)- 
(4) can also be considered as a mathematical model of steady-state two-dimensional diffusion 
of an impurity, which enters into a first-order chemical reaction. The solution of this 
problem has the form 

} { sh [(g/e)'/2 (I -- x)] __ t X Cnlo ([3np) sin (nnx) , 
d(x,  O) = Co . sh [(gls) '/2] ~ = ,  (5) 

where 

c6 (x) = ~oCo [ sh[(p/8)'/2 (1--x)]  o~ [3n } 
sh [(p/e) 1/21 + b X.C,~ ~ 11 ([3n) sin (~nx) , 

t / ~ l  "*  

2~ne (p - -  g)/[~2 n 
Cn = ty] Io ([~n) + (?n ~ -'}- b) [~nlz ([3n) 

(6) 

(7) 

~ = g + ~(~n)~, v] = p + e (nn)L (8) 

and Io and 11 are Bessel functions of order zero and order one, respectively. Clearly, the 
deviation from equilibrium between the gaseous and adsorbed phases is characterized by the 
radial diffusion flux at the channel wall, i.e., the quantity (%c/Bp)p = I" From (5)-(7) 
we see that the radial diffusion flux is exactly zero only in two cases: when the decay 
constant % is zero and when the diffusion coefficient D in the gaseous phase is equal to the 
surface diffusion coefficient D s. In both cases the dependence of the bulk concentration 
c on the radial coordinate disappears because the coefficient C s becomes zero. Otherwise, 

the equilibrium between the gaseous and adsorbed phases is disrupted to one degree or another. 

Let us find the conditions under which the problem becomes quasi-one-dimensional, i.e., 
the dependence of the concentration on the radial coordinate is weak. In this case one 
should expect that an expression of the form 

c (x, p) = A (x) + B (x) p2 (9) 

will be a good approximation of the exact solution of the problem. If we set 0 = 1 in 
Eq. (i), then the resulting condition together with conditions (2) and (3) specifies the 
algebraic relation between A(x) and B(x). When this relation is taken into account and 
Eq. (9) is substituted into Eq. (I) and we confine our discussion to terms of order zero in p 
and solve the resulting differential equation for A(x) with the boundary conditions A(O) = 
do and A(1) = 0, we oDtain 

c(x, p)=co  sh [ ( g+ a ) I / e ( 1 - - x ) / e  I/2] ( 1 +  a ) 
sh [(g-~- a) X li /e 112] ~ 92 ' (10) 

where 

4 (p - -  g )  t 
(p -- g) (2 + t) + 4t + 2b (II) 
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Fig. I. Concentration versus radial coordinate at p = i0 [solid curves re- 
present the exact solution (15) and dashed curves represent the quasi-one- 
dimensional approximation (i0)]: i) b = i0, 2) b = 104 , 3) b = 105 . 

Fig. 2. Concentration versus radial coordinate with condition (14) not 
satisfied (solid and dashed lines as in Fig. i): i) b = 10 3 , p = i0; 2) 
b = 10 2 and p = i; 3) b = 10 2 and p = 0.i. 

The dimensionless numerical density of the impurity in the adsorbed phase is found in 
this case from the boundary condition (3). Expression (i0) is a good approximation of the 
exact solution of problem (1)-(4) on condition that there is a weak dependence on the radial 
variable, i.e., when a << 4, or allowing for Eq. (ii) and the explicit form of the para- 
meters in it, 

8__D__D ~_ ~'ro2 (14Ds 8D~ 
v~.ro - -  Ds,/D) -} VKo ~ (1 -}- Ds/D ) ># 1. (12) 

Usually D s < D and, therefore, all terms in condition (12) are positive. Furthermore, 
since D/vtro ~ Kn, where Kn is the Knudsen number, and the formulation of the problem cor- 
responds to a viscous regime, the first term in condition (12) is much smaller than unity. 
Condition (127, therefore, in actual fact breaks up into two conditions: 

Xr~/D s << l, (13) 

~/Z ))Kn-t (14) 

If at least one of these conditions is satisfied the problem becomes quasi-one-dimensional 
and its solution is described well by Eq. #i0). 

Condition (13) is violated, e.g., when the surface diffusion coefficient D s is zero. 

In this case from Eq. (2)we have -D(0~)r = ro = ~ns(X), i.e., radial diffusion flux exact- 

ly balances the radioactive decay of the impurity atoms in the adsorbed phase. In this case 
satisfaction of condition (14), which in fact means no radioactive decays during adsorption, 

thus results in negligible radial fluxes on the wall, i.e., the problem remains quasi-one- 
dimensional. 

Calculat%ons performed with formulas (5) and (i0), with the assumption that t = 103 , 
e = i0 -4, p/~ = 104 , confirmed the above. Figures i and 2 show the radial distribution of 

the impurity concentration of the radioactive impurity in the cross section of the channel 
at x = 0.01 for various values of the parameters p and b. Figure i corresponds to the fixed 
value p = i0 [condition (!3) is not satisfied] and Fig. 2 corresponds to the fixed value 
~/~ = b/p = i0 = [condit• (14) is not satisfied]. From Figs. 1 and 2 we see that as one of 
the conditions, (13) or (14), is satisfied the problem becomes quasi-one-dimensional and at 
the same time the approximate expression (10) provides a more and more adequate description 
of the behavior of the exact solution (5). 

As already mentioned, two-dimensionality should lead to a redistribution of the contri- 
butions of volume and surface diffusion to the total diffusion flux. The nature of this re- 
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distribution can be assessed from the quasi-one-dimensional solution (10). In this case the 
ratio of the total flux Jg in the gaseous phase to the total flux Js over the surface of the 
channel does not depend on the longitudinal coordinate x and has the form 

3t( 21 4/Jg= --~--~ 1 6 - -  a ' (15) 

while in the purely one-dimensional case (which is realized, e.g., at % = 0) this ratio is 
2t/b. From a comparison of this value with (15) it follows that when the two-dimensionality 
is taken into account, i.e., when there is not local equilibrium between the bulk and ad- 
sorbed phases, the contributions are redistributedto the benefit of the gaseous phase. 

NOTATION 

L, channel length, r0, channel radius; x, p, dimensionless longitudinal and radial co- 
ordinates; c, numerical density of the admixture in a gaseous phase; no, the total number 
of particles in a gaseous phase; Cs, dimensionless numerical density of the admixture in the 
adsorption phase (degree of occupation); a, diameter of the adsorbate molecules; ~, constant 
of radioactive decay; D, Ds, diffusion coefficient in the gaseous phase and over the channel 
surface, respectively; vi, thermal velocity of the admixture molecules in the gaseous phase; 
1/6, adsorption time; Js, total diffusion flow over the channel surface; Jg, total diffusion 
flow in the gaseous phase. 
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MACROKINETICSOF INTERMETALLIC COMPOUND FOPdiATION IN THE DIFFUSION 

ZONE 

L. G. Voroshnin, B. M. Khusid, 
and B. B. Khina 

UDC 539.219.3 + 541.126-16 

A macrokinetic model is developed for reaction diffusion in binary metallic systems 
for situations when the phase composition of the diffusion zone does not correspond 
to the equilibrium phase diagram. 

Investigation of the formation of intermetallides and silicides during diffusion mass 
transfer with solid phase transformations is associated with the development of integral 
circuit technology, the perfection of methods of superposing protective coatings on metals, 
etc. It is established experimentally that the phase composition of the diffusion zone dur- 
ing the annealing of thin,film andbulk diffusion pairs of the metal-metal (Ni--AI, Co--A1, 
Cr--AI, Au--AI, Cu--Sn, etc.) and metal (Co, Ni, Pd, Pt, Cr, Ti, V, W, Mo, Nb, Ta, Zr, etc.)- 
silicon types does not correspond to an isothermal section of the equilibrium phase diagram 
[1-3]. For instance, only Ni2Si out of the six equilibrium phases (Ni3Si, NisSi2, Ni2Si, 
Ni~Si2, NiSi, NiSi2) is formed in the Ni--Si system at the annealing temperature 200-350~ [4], 
while only Pd2Si of the four phases (Pd3Si, PdsSi2, Pd2Si, PdSi) [5] is formed in the Pd-Si 
pair at 200-600~ and which growuntil exhaustion of one of the initial elements. The ab- 
sence of thin interlayers of the remaining phases is confirmed by using scanning electron 
microscopy [3-5]. Analogous facts, the absence of intermediate compounds, are observed 
during growth of MoS• TiSi2, Nbgi2, WSi2 during silicon saturation of infusible metals 

Belorussian Polytechnic Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, 
Vol. 55, No. 3, pp. 957-965, December, 1988. Original article submitted July 30, 1987. 

1388 0022-0841/88/5506-1388512.50 �9 1989 Plenum Publishing Corporation 


